Image Classification with TensorFlow 2

Data Science After Dark
Springfield Missouri

Presented by Jason Klein
11/19/2019
Welcome

Jason Klein is Chief Innovation Officer at Logic Forte, a cloud-based platform that provides managed data services for restaurants. Last year, the platform processed information representing $350MM sales and 50MM customer visits in 19 states. Jason is building Deep Learning models to tap into two decades of historical data.
“Artificial intelligence would be the ultimate version of Google. The ultimate search engine that would understand everything on the web. It would understand exactly what you wanted, and it would give you the right thing. We're nowhere near doing that now. However, we can get incrementally closer to that, and that is basically what we work on.”
—Larry Page, Co-Founder, Google, October 2000
Artificial Intelligence Timeline

The field of AI research was born shortly after the first Digital Computer was invented. Advances in machine learning and data-hungry deep learning methods can be attributed to faster computers, algorithmic improvements, and access to large amounts of data enabled advances in machine learning and perception.

Digital Computer
The ENIAC was invented by Eckert and Mauchly at the University of Pennsylvania. Construction began in 1943 and ENIAC was completed until 1946.

Checkers
Arthur Samuel started developing his checkers program in the 1950s. In 1962, the program won a publicized match against checkers champion Robert Nealey.

Chess
IBM Deep Blue defeats Kasparov, becoming the first computer system to defeat a reigning world champion in a match.
At the Future of Go Summit, AlphaGo beat Ke Jie, the world No.1 ranked player at the time, in a three-game match.

Jeopardy
IBM's Watson beats two human champions in a Jeopardy! competition.

2011

Go

Netflix
The Netflix Prize competition is launched. The aim was to beat Netflix's recommendation accuracy in predicting a user's rating for a film. The prize was won in 2009.

2009

2017
Alibaba language processing AI outscores top humans at a Stanford reading and comprehension test, scoring 82.44 against 82.304 on a set of 100,000 questions.

Experts believe AI will outperform humans in many activities, such as translating languages (2024), writing a high-school essay (2026), driving a truck (2027), working in retail (2031), writing a bestselling book (2049), and working as a surgeon (2053).

Google Duplex
Announcement of Google Duplex, a service to allow an AI assistant to book appointments over the phone using a "nearly flawless" imitation of human-sounding speech.

Outperform Humans
Experts believe AI will outperform humans in many activities, such as translating languages (2024), writing a high-school essay (2026), driving a truck (2027), working in retail (2031), writing a bestselling book (2049), and working as a surgeon (2053). [1]

2018: Google Duplex AI Calls and Makes Appointments

https://www.youtube.com/watch?v=D5VN56jQMWM
2019: Meet the New Google Assistant on Pixel

https://www.youtube.com/watch?v=i-ZpCCKgkkI
Google Search Trends: 11/01/2014-10/31/2019 (5 Years)

TensorFlow is currently the most searched Machine Learning framework, compared to its predecessor (Theano) and its largest rival (PyTorch). Other frameworks include: Alexnet, Caffe, Caffe 2, Chainer, CNTK (Microsoft), Decaf, DL4J, DSSTNE (Amazon), DyNet (CMU), and MxNet (Amazon).
Deep Learning with TensorFlow

Several current uses of TensorFlow. Google Open Sourced the platform in 2015.

Deep Speech (Mozilla)
Open Source Speech-To-Text engine, using a model trained by machine learning techniques, based on Baidu’s Deep Speech research paper. DeepSpeech uses Google’s TensorFlow project to make the implementation easier.

RankBrain (Google)
RankBrain is an algorithm learning artificial intelligence system that helps Google to process search results and provide more relevant search results for users. It is the third most important factor in the ranking algorithm along with links and content.

Inception Image Classification (Google)
Google’s deep convolutional neural network architecture named “Inception”, which was responsible for setting the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014

SmartReply (Google)
Deep LSTM model to automatically generate email responses. Automatically determine if an email is answerable with a short reply, then compose a few suitable responses that users can edit or send with just a tap.

Networks for Drug Discovery (Google)
These massively multitask networks for Drug Discovery are deep neural network models for identifying promising drug candidates.

On-Device Vision for OCR (Google)
On-device computer vision model to do optical character recognition (OCR) to enable real-time language translation.
Deep Learning with TensorFlow

Several current uses of TensorFlow. Google Open Sourced the platform in 2015.

Deep Speech (Mozilla)
Open Source Speech-To-Text engine, using a model trained by machine learning techniques, based on Baidu’s Deep Speech research paper. DeepSpeech uses Google's TensorFlow project to make the implementation easier.

RankBrain (Google)
RankBrain is an algorithm learning artificial intelligence system that helps Google to process search results and provide more relevant search results for users. It is the third most important factor in the ranking algorithm along with links and content.

Inception Image Classification (Google)
Google’s deep convolutional neural network architecture named “Inception”, which was responsible for setting the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014.

SmartReply (Google)
Deep LSTM model to automatically generate email responses. Automatically determine if an email is answerable with a short reply, then compose a few suitable responses that users can edit or send with just a tap.

Networks for Drug Discovery (Google)
These massively multitask networks for Drug Discovery are deep neural network models for identifying promising drug candidates.

On-Device Vision for OCR (Google)
On-device computer vision model to do optical character recognition (OCR) to enable real-time language translation.
Use Cases of TensorFlow

TensorFlow can train and run deep neural networks for the following uses cases:

1. Handwritten digit classification
2. Image recognition
3. Word embeddings
4. Recurrent neural networks
5. Sequence-to-sequence models for machine translation
6. Natural language processing
7. PDE (partial differential equation) based simulations
8. Production prediction at scale, with the same models used for training
Use Cases of TensorFlow

TensorFlow can train and run deep neural networks for the following uses cases:

1. Handwritten digit classification
2. **Image recognition**
3. Word embeddings
4. Recurrent neural networks
5. Sequence-to-sequence models for machine translation
6. Natural language processing
7. PDE (partial differential equation) based simulations
8. Production prediction at scale, with the same models used for training
Plan to invest a significant amount of time preparing your data and planning your model.

Concept
Identify a specific problem to be addressed

Prepare Data
Identify data related to problem, ensure sufficient data is available, and prepare data for training.

Plan Model
Determine which model(s) will be appropriate for problem.

Develop Model
Build the model that will process your data. Reserve part of your data for testing.

Ongoing Training
Model should be trained using updated data.

Deploy
Model can be deployed to large distributed system, or to web and mobile clients.

Train and Evaluate
Train and evaluate your model. Refine until desired accuracy.
Machine Learning Design Process

Plan to invest a significant amount of time preparing your data and planning your model.

Concept
Identify a specific problem to be addressed

Prepare Data
Identify data related to problem, ensure sufficient data is available, and prepare data for training.

Plan Model
Determine which model(s) will be appropriate for problem.

Develop Model
Build the model that will process your data. Reserve part of your data for testing.

Ongoing Training
Model should be trained using updated data.

Deploy
Model can be deployed to large distributed system, or to web and mobile clients.

Train and Evaluate
Train and evaluate your model. Refine until desired accuracy.
Changes in TensorFlow 2

TensorFlow 2.0 has been redesigned with a focus on developer productivity, simplicity, and ease of use.

|---|----------------|--------------------|-------------------------------------|-----------------------------|--------------------|--------------------------|-------------------------------|---------------------------|

Image Classification

Training Demo

We will use TensorFlow to train a Neural Network Model to classify images of clothing, like sneakers and shirts.

Our trained model will be able to recognize 9 different articles of clothing.
Basic Image Classification with TensorFlow 2

Train a Neural Network Model to Classify Images of Clothing, like Sneakers and Shirts.

Classify the Fashion MNIST dataset
This guide uses the Fashion MNIST dataset which contains 70,000 grayscale images in 10 categories.

Train the Model
Training the neural network model requires feeding training data to the model, learning the images and labels, and verifying predictions.

Make Predictions
With the trained model, you can make predictions about images.

Follow along @
tensorflow.org/tutorials/keras/classification
Demo
Wrap-up and Questions

Basic Image Classification with TensorFlow 2

Classify the Fashion MNIST dataset
This guide uses the Fashion MNIST dataset which contains 70,000 grayscale images in 10 categories.

Train the Model
Training the neural network model requires feeding training data to the model, learning the images and labels, and verifying predictions.

Make Predictions
With the trained model, you can make predictions about images.

Follow along @ tensorflow.org/tutorials/keras/classification
Thank you for Attending

Data Science After Dark

Springfield Missouri
11/19/2019

Questions about TensorFlow or Image Classification? Contact Jason Klein

jrklein.com me@jrklein.com @JasnK LinkedIn.com/JasnK